Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 335171
(http://iopscience.iop.org/0305-4470/33/29/302)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:28

Please note that terms and conditions apply.

# Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator 

Gabriel Álvarez and Carmen Casares<br>Departamento de Física Teórica II, Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid, Spain

Received 14 March 2000, in final form 25 May 2000


#### Abstract

The asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator is studied in a region of the coupling constant plane in which there is a sequence of exponentially small subseries beyond the standard Rayleigh-Schrödinger perturbation theory (RSPT) power series. We give a simple algorithm for the calculation of these subseries (to any desired order) in terms of the RSPT coefficients expressed as polynomials in the quantum number, and illustrate our results with numerical Borel-Padé summations of the expansion up to third exponentially small order.


## 1. Introduction

It seems that the initial interest in the eigenvalues of the cubic anharmonic oscillator

$$
\begin{equation*}
H=\frac{1}{2} p^{2}+\frac{1}{2} x^{2}+g x^{3} \tag{1}
\end{equation*}
$$

came from the study of the Yang-Lee singularities of the Ising model [1-3] by renormalization group methods, which led Bessis and Zinn-Justin to conjecture that, for purely imaginary values of the coupling constant $g$, the spectrum of the operator (1) is real. Physical intuition also suggests that for nonzero real values of $g$ the bound states of the harmonic oscillator become resonances, and Yaris et al [4] used the cubic anharmonic oscillator as a model to argue heuristically that the complex-dilation method [5] is applicable to potentials that do not vanish at infinity, and yields correctly both the real and the imaginary parts of the complex eigenvalues. Yet a mathematically rigorous discussion of the problem from the functionalanalytic point of view is not straightforward because the action of the operator (1) on the space of infinitely differentiable functions of compact support admits infinitely many self-adjoint extensions [6]. This is the quantum analogue of the fact that a classical particle not confined to the potential well reaches minus infinity in a finite amount of time, and requires 'further instructions' to proceed. The essential result was given by Caliceti et al [7]: for $\operatorname{Im} g>0$ the spectrum of the operator (1) consists of isolated eigenvalues of finite multiplicity that can be continued analytically to $\operatorname{Im} g=0$, where they correspond to the solutions of the differential equation

$$
\begin{equation*}
-\frac{1}{2} \psi^{\prime \prime}(x)+\left(\frac{1}{2} x^{2}+g x^{3}-E\right) \psi(x)=0 \tag{2}
\end{equation*}
$$

that are exponentially decreasing at plus infinity and satisfy a Gamow-Siegert [8] purely outgoing wave boundary condition at minus infinity. Furthermore, for sufficiently small values of $|g|$ and $0<\arg g<\pi$, the Rayleigh-Schrödinger perturbation theory (RSPT) power series


Figure 1. Schematic representation of the Riemann surface of the eigenvalues of the cubic anharmonic oscillator. The origin is a global $g^{2 / 5}$ singularity, and the arguments have to be understood modulo $5 \pi$. The dots mark the lowest Bender-Wu branch points; in the first of the four families they are labelled by the unperturbed quantum numbers of the levels that cross. The shaded areas represent the higher branch points, which cluster at the origin. The $\boldsymbol{R}$ and $\mathrm{i} \boldsymbol{R}$ labels mark the values of $\arg g$ for which the eigenvalues are real and purely imaginary, respectively.
is asymptotic and Borel summable to these resonances. Note that, for purely imaginary values of the coupling constant (i.e. $\arg g=\frac{\pi}{2}$ ), we have the typical alternating sign pattern of the Borel summable series with real Borel sum, while for real values of $g$ the coefficients of the RSPT series have the same sign and the Borel transform develops a singularity on the positive real axis that prevents summability.

The conjecture of Bessis and Zinn-Justin has been reconsidered recently in the more general setting of PT-symmetric Hamiltonians by Delabaere and Pham [9], who rederived the small $|g|$ version of the result using the 'exact WKB method' $[10,11]$, and by Bender and Dunne [12], who also gave numerical evidence of the Padé summability of the RSPT series for purely imaginary values of the coupling constant.

Summing up, there are analytic proofs and numerical algorithms for the Borel summability of the RSPT series in the coupling constant region $0<\arg g<\pi$. These results, however, dealt only with the behaviour of the eigenvalues in limited regions of the coupling constant, and a global description (analogous to the work of Bender and Wu on the quartic oscillator [13]) was still lacking. The main idea is that the different eigenvalues are the values that a single analytic function takes on different sheets of a Riemann surface characterized by the position of its singularities (the Bender-Wu branch points), at which level crossing occurs. In 1995 Alvarez [14] applied numerical and semiclassical methods to study the full analytic configuration of the eigenvalues of the cubic anharmonic oscillator, which is illustrated in figure 1. There are four families of square root branch points, each of which can be labelled by the quantum numbers of the two unperturbed levels that cross. The origin, which behaves as a $g^{2 / 5}$ global singularity in the sense defined by Simon [15], is a limit point of the four families of branch points. Therefore the Riemann surface consists of an infinite number of 'two and a half' Riemann sheets joined to each other at exactly four square root branch points. Numerical
calculations for arbitrary values of $|g|$ and analytic arguments for sufficiently small values of $|g|$ confirmed that the eigenvalues are real for $\arg g=\frac{\pi}{2}$ and $3 \pi$ (and purely imaginary for $\arg g=\frac{7 \pi}{4}$ and $\left.\frac{17 \pi}{4}\right)$.

Our main goal in this paper is to study the structure and summability of the asymptotic expansion for the eigenvalues beyond the real axis. For concreteness, consider the analytic continuation of the unperturbed $n=0$ eigenvalue across $\arg g=0$. The first singularity met is the $(0,1)$-type Bender-Wu branch point located at $|g| \approx 0.138096$, $\arg g=-\frac{\pi}{8}$ (see figure 1 and [14]). That is to say, there is a sector of opening larger than $\pi$ in which the $n=0$ eigenvalue is analytic. In a recent paper [16] we showed that the positive real axis, $\arg g=0$, is a Stokes line of the asymptotic expansion for the eigenvalues, i.e. the asymptotic expansion changes discontinuously from the Borel summable RSPT power series valid in $0<\arg g<\pi$ to a more complicated expansion valid (for our $n=0$ example) in $-\frac{\pi}{8}<\arg g<0$, and reduced the problem of finding the new expansion to the solution of an 'exact matching condition'. In this paper we show that the new asymptotic expansion consists of the RSPT power series plus an infinite sequence of exponentially smaller subseries, where the $k$ th subseries is the $k$ th power of a common exponentially small prefactor times a sum of products of power series and logarithmic terms. Thanks to an observation of Hoe et al [17] we are able to give a simple algorithm for the calculation of these subseries (to any desired order) in terms of the elementary calculation of the RSPT coefficients as polynomials in the quantum number $n$. We find that all the power series coefficients grow only slightly faster than the RSPT coefficients, and our conjecture is that these power series are Borel summable, a conjecture supported by numerical Borel-Padé summations in the sector $-\frac{\pi}{8}<\arg g<0$ up to third exponentially small order.

The layout of the paper is as follows: in the next section we summarize the main ideas of the matching procedure of [16] with just enough detail to explain the origin of the matching condition and the analytic reason for the discontinuous change of the asymptotic expansion across the real axis; section 3 is devoted to the iterative solution of the matching condition beyond the real axis, and to the analysis of the structure of the successively exponentially smaller contributions; section 4 deals with the asymptotic behaviour of the power series coefficients and the numerical Borel-Pade summation; the paper ends with a summary.

## 2. Matching condition

Although we refer to [16] for a detailed account, in this section we outline the main ideas of the matching procedure used to obtain the asymptotic expansion that includes exponentially small subseries beyond the standard RSPT power series. The solution of the eigenvalue problem posed in the introduction consists of three steps: (i) scale the independent variable in the Schrödinger equation to obtain an equation with an unperturbed double turning point fixed at the origin and an unperturbed simple turning point fixed at (say) one; (ii) build uniform, Borel summable asymptotic expansions of the wavefunction around these turning points; and
(iii) match these expansions in the 'under the barrier' region.

The unperturbed turning points are fixed by the new independent variable

$$
\begin{equation*}
z=-h^{1 / 2} x \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
h=(2 g)^{2} \tag{4}
\end{equation*}
$$

and the resulting Schrödinger equation is

$$
\begin{equation*}
-h^{2} \psi^{\prime \prime}(z)+\left(z^{2}-z^{3}-2 h E\right) \psi(z)=0 \tag{5}
\end{equation*}
$$

Table 1. Lowest $E^{(2 k)}(\nu)$ and $f^{(2 k)}(v)$ coefficients as polynomials in $v$. The RSPT coefficient of $g^{2 k}$ for the $n$th eigenvalue is $E^{(2 k)}\left(n+\frac{1}{2}\right)$.

| $k$ | $-E^{(2 k)}(v)$ | $f^{(2 k)}(v)$ |
| :--- | :--- | :--- |
| 0 | $-v$ |  |
| 1 | $\frac{7}{16}+\frac{15}{4} v^{2}$ | $\frac{77}{128}+\frac{141}{32} v^{2}$ |
| 2 | $\frac{1155}{64} v+\frac{705}{16} v^{3}$ | $\frac{13937}{2048} v+\frac{7717}{512} v^{3}$ |
| 3 | $\frac{101479}{2048}+\frac{209055}{256} v^{2}+\frac{115755}{128} v^{4}$ | $\frac{43147783}{786420}+\frac{5153379}{65536} v^{2}+\frac{2663129}{32768} v^{4}$ |
| 4 | $\frac{129443349}{16384} v+\frac{77300685}{2048} v^{3}+\frac{23968161}{1024} v^{5}$ | $\frac{1769452671}{8388608} v+\frac{240109947}{262144} v^{3}+\frac{282482109}{524288} v^{5}$ |

(The role of the minus sign in equation (3) is to make the convention of this paper, standard when dealing with the cubic oscillator, conform to the convention of [16] which deals simultaneously with even and odd oscillators.)

The origin-anchored solution which is exponentially decreasing at minus infinity can be written in terms of the parabolic cylinder function $D_{v-1 / 2}(z)$,

$$
\begin{equation*}
\psi(z)=\left[u^{\prime}(z)\right]^{-1 / 2} D_{v-1 / 2}\left[-\left(\frac{2}{h}\right)^{1 / 2} u(z)\right] \tag{6}
\end{equation*}
$$

which, put into equation (5), gives the following equation for $u(z)$ :

$$
\begin{equation*}
u(z)^{2} u^{\prime}(z)^{2}=z^{2}-z^{3}-2 h\left[E-v u^{\prime}(z)^{2}\right]+\frac{h^{2}}{2}\left[\frac{u^{\prime \prime \prime}(z)}{u^{\prime}(z)}-\frac{3}{2}\left(\frac{u^{\prime \prime}(z)}{u^{\prime}(z)}\right)^{2}\right] \tag{7}
\end{equation*}
$$

Substituting the asymptotic expansions

$$
\begin{align*}
& u(z)=\sum_{k=0}^{\infty} u_{k}(z) h^{k}  \tag{8}\\
& E=\sum_{k=0}^{\infty} E^{(2 k)}(v) \frac{h^{k}}{4^{k}} \tag{9}
\end{align*}
$$

into equation (7) and equating powers of $h$, we obtain a system of differential equations that can be integrated recursively for the $u_{k}(z)$ in terms of elementary functions. The $E^{(2 k)}(v)$, which are fixed by the requirement that $u_{k}(z)$ be regular at the origin, turn out to be precisely the RSPT coefficients expanded as polynomials in $n+\frac{1}{2}$, except that they are now functions of the as yet unspecified parameter $v$. For later reference, the first five $E^{(2 k)}(\nu)$ are listed in table 1.

The uniform expansion anchored at the unperturbed simple turning point $z=1$ is built following the same steps, except that the solution with outgoing wave behaviour at infinity is written in terms of the Airy function $\mathrm{Ai}^{(+)}(z)=\mathrm{Bi}(z)+\mathrm{i} \mathrm{Ai}(z)$. Therefore we set

$$
\begin{equation*}
\psi(z)=\left[v^{\prime}(z)\right]^{-1 / 2} \mathrm{Ai}^{(+)}\left[h^{-2 / 3} v(z)\right] \tag{10}
\end{equation*}
$$

into equation (5) and obtain the corresponding equation for $v(z)$ :

$$
\begin{equation*}
v(z) v^{\prime}(z)^{2}=z^{2}-z^{3}-h 2 E+\frac{h^{2}}{2}\left[\frac{v^{\prime \prime \prime}(z)}{v^{\prime}(z)}-\frac{3}{2}\left(\frac{v^{\prime \prime}(z)}{v^{\prime}(z)}\right)^{2}\right] \tag{11}
\end{equation*}
$$

Again, substituting the asymptotic expansion for $v(z)$

$$
\begin{equation*}
v(z)=\sum_{k=0}^{\infty} v_{k}(z) h^{k} \tag{12}
\end{equation*}
$$

and the asymptotic expansion for the energy (9) into equation (11) we obtain a system of equations for the $v_{k}(z)$ which can be integrated recursively in terms of elementary functions.

The final step is to match the Borel summable asymptotic expansions for the wavefunctions that result from the composition of (6) and (8) (around the origin), and of (10) and (12) (around the outer turning point) in their common region of validity-the 'under the barrier' region.

Comparing the Borel summable asymptotic expansions for the Airy and parabolic cylinder functions [16] in the region $0<\arg g<\pi$, it turns out that the exponentially increasing term in the asymptotic expansion of (6) must vanish, which leads to the exact matching condition

$$
\begin{equation*}
v=n+\frac{1}{2} \quad(n=0,1,2, \ldots) \tag{13}
\end{equation*}
$$

and to the ensuing expansion for the energy

$$
\begin{equation*}
E \sim E^{(\mathrm{PT})} \equiv \sum_{k=0}^{\infty} E_{n}^{(2 k)} \frac{h^{k}}{4^{k}} \tag{14}
\end{equation*}
$$

where we have denoted

$$
\begin{equation*}
E_{n}^{(2 k)} \equiv E^{(2 k)}\left(n+\frac{1}{2}\right) \tag{15}
\end{equation*}
$$

This is, of course, the region of Borel summability of the RSPT series mentioned above.
For sufficiently small $\arg g<0$, however, both the asymptotic expansions of the Airy and parabolic cylinder functions are the sum of a dominant and a subdominant series uniquely defined by Borel summability, and we implement the matching by equating the ratios of the dominant to the subdominant terms in the asymptotic expansions of equations (6) and (10). This matching condition, which is an equation for $v$, can be written as

$$
\begin{equation*}
f(v)=\mathrm{e}^{\mathrm{i} \pi}\left(\mathrm{e}^{\mathrm{i} 2 \pi v}+1\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
f(v)=\frac{(2 \pi)^{1 / 2}}{\Gamma\left(v+\frac{1}{2}\right)}\left(\frac{32}{h}\right)^{v} \exp \left[-\frac{8}{15 h}-\sum_{k=1}^{\infty} f^{(2 k)}(v) h^{k}\right] \tag{17}
\end{equation*}
$$

and the $f^{(2 k)}(\nu)$ are polynomials in $v$ which can be calculated explicitly in principle to any desired order. We list the first four $f^{(2 k)}(v)$ in the last column of table 1.

As we mentioned in the introduction, the calculation of the polynomials $E^{(2 k)}(\nu)$ is trivial and can be carried out to high order with just a few lines of code. Although equally algorithmic, a direct calculation of the $f^{(2 k)}(v)$ from the matching algorithm is much more time- and memory-consuming, essentially because it involves the composition and expansion of series with a rapidly increasing number of terms. The calculation of the $f^{(2 k)}(v)$ to high order can be carried out, however, without any difficulty thanks to an observation made by Hoe et al [17] in the context of the Stark effect in hydrogenic ions. In fact, the Stark effect Hamiltonian, after separation into parabolic coordinates, is equivalent to a two-dimensional isotropic quartic oscillator, and Hoe et al noticed that the ionization rates could be expressed in terms of the energies. A similar relation seems to be true for the cubic anharmonic oscillator: the data in table 1 illustrate that

$$
\begin{equation*}
f^{(2 k)}(v)=-\frac{2}{15} \frac{1}{k 4^{k}} \frac{\partial E^{(2 k+2)}(\nu)}{\partial v} \tag{18}
\end{equation*}
$$

or in a more condensed form

$$
\begin{equation*}
f(v)=\frac{(2 \pi)^{1 / 2} 2^{5 v}}{\Gamma\left(v+\frac{1}{2}\right)} \exp \left[\frac{8}{15} \int \frac{\partial E}{\partial v} \frac{\mathrm{~d} h}{h^{2}}\right] . \tag{19}
\end{equation*}
$$

We do not have a proof of these equations (probably related to the elliptic character of cubic and quartic polynomials), but we have checked their validity by direct calculation with the
matching algorithm up to $k=10$. Then we used a standard RSPT algorithm to calculate the $E^{(2 k)}(\nu)$, and from these and equation (18) the $f^{(2 k)}(v)$ to a sufficiently high order to perform the numerical Borel-Padé summations of section 4 and check our large- $k$ asymptotic estimates.

## 3. Iterative solution of the matching condition beyond the real axis

First note that, if the matching functions $f(v)$ were identically zero, then the solutions of equation (16) would be precisely those given by equation (13). Since $f(v)$ is exponentially small, we put

$$
\begin{equation*}
v=n+\frac{1}{2}+\Delta v \quad(n=0,1,2, \ldots) \tag{20}
\end{equation*}
$$

and rewrite the matching condition in a form suitable for iterative solution. We keep track of the exponentially small order by introducing a parameter $\lambda$ (that ultimately will be set to one) which appears in two places: multiplying the matching function $f(\nu)$ and as the ordering parameter in the series for $\Delta v$. That is to say, we write

$$
\begin{equation*}
\Delta v=\frac{1}{2 \pi \mathrm{i}} \ln \left[1+\lambda f\left(n+\frac{1}{2}+\Delta v\right)\right] \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta v=\lambda \Delta v_{1}+\lambda^{2} \Delta \nu_{2}+\lambda^{3} \Delta \nu_{3}+\cdots . \tag{22}
\end{equation*}
$$

Expanding the right-hand side of equation (21) as a Taylor series in $\lambda$, we can find immediately the first three terms (which will be enough to infer the general pattern) of the solution for $\Delta \nu$ :

$$
\begin{align*}
\Delta \nu_{1} & =-\frac{\mathrm{i}}{2 \pi} f_{n}  \tag{23}\\
\Delta \nu_{2} & =-\frac{1}{4 \pi^{2}} f_{n} f_{n}^{\prime}+\frac{\mathrm{i}}{4 \pi} f_{n}^{2}  \tag{24}\\
\Delta \nu_{3} & =-\frac{\mathrm{i}}{6 \pi} f_{n}^{3}+\frac{3}{8 \pi^{2}} f_{n}^{2} f_{n}^{\prime}+\frac{\mathrm{i}}{8 \pi^{3}} f_{n}\left(f_{n}^{\prime}\right)^{2}+\frac{\mathrm{i}}{16 \pi^{3}} f_{n}^{2} f_{n}^{\prime \prime} \tag{25}
\end{align*}
$$

where again we have denoted by a subindex $n$ the value of the matching function $f(v)$ and its derivatives at $v=n+\frac{1}{2}$.

The corresponding expansion for the eigenvalues up to third exponentially small order is easily obtained by first putting equation (20) into (9) and expanding to third order in $\Delta v$

$$
\begin{equation*}
E \sim E^{(\mathrm{PT})}+\frac{\Delta v}{1!} \frac{\partial E^{(\mathrm{PT})}}{\partial n}+\frac{\Delta v^{2}}{2!} \frac{\partial^{2} E^{(\mathrm{PT})}}{\partial n^{2}}+\frac{\Delta \nu^{3}}{3!} \frac{\partial^{3} E^{(\mathrm{PT})}}{\partial n^{3}}+\mathrm{O}\left(\Delta v^{4}\right) \tag{26}
\end{equation*}
$$

and subsequently substituting equations (22)-(25) into (26) and collecting powers of $\lambda$. We will write the final asymptotic expansion as

$$
\begin{equation*}
E \sim E^{(\mathrm{PT})}+\Delta E_{1}+\Delta E_{2}+\Delta E_{3}+\cdots \tag{27}
\end{equation*}
$$

where we have already set $\lambda=1$ and the subindex labels the exponentially small order.
The first exponentially small subseries is formally purely imaginary

$$
\begin{align*}
\Delta E_{1} & =-\frac{\mathrm{i}}{2 \pi} f_{n} \frac{\partial E^{(\mathrm{PT})}}{\partial n}  \tag{28}\\
& =-\mathrm{i} C(h) B_{1}(h) \tag{29}
\end{align*}
$$

where we have defined the exponentially small prefactor

$$
\begin{equation*}
C(h) \equiv \frac{2^{5 n+2}}{\pi^{1 / 2} n!} \mathrm{e}^{-8 /(15 h)} h^{-(n+1 / 2)} \tag{30}
\end{equation*}
$$

and $B_{1}(h)$ is the $p=1$ instance of

$$
\begin{equation*}
B_{p}(h)=\sum_{k=0}^{\infty} b_{n, p}^{(2 k)} h^{k} \equiv \exp \left[-p \sum_{k=1}^{\infty} f_{n}^{(2 k)} h^{k}\right]\left(\sum_{k=0}^{\infty} \frac{\partial E_{n}^{(2 k)}}{\partial n} \frac{h^{k}}{4^{k}}\right) . \tag{31}
\end{equation*}
$$

The last two factors in equation (28) are readily interpreted in the context of the elementary semiclassical derivations of the imaginary part of the resonances: $\frac{\partial E^{(\mathrm{PT})}}{\partial n}$ corresponds to the 'frequency of collisions with the barrier', while $f_{n}$ represents the 'tunnelling probability'. Although this seems to be the natural factorization from the physical point of view, for our purposes the factorization of equation (29) is more convenient, in which we separate the exponentially small prefactor from the Borel summable power series.

The second exponentially small correction to the eigenvalue (i.e. proportional to the square of $C(h))$ has both formally real and formally imaginary parts, which we denote with superindices:

$$
\begin{align*}
\Delta E_{2}^{(r)}=- & \frac{1}{8 \pi^{2}} \frac{\partial}{\partial n}\left(f_{n}^{2} \frac{\partial E^{(\mathrm{PT})}}{\partial n}\right)  \tag{32}\\
& =C(h)^{2}\left\{\left[\ln \left(\frac{h}{32}\right)+\psi(n+1)\right] B_{2}(h)-\frac{1}{2} \frac{\partial B_{2}(h)}{\partial n}\right\}  \tag{33}\\
\Delta E_{2}^{(i)}= & \frac{1}{4 \pi} f_{n}^{2} \frac{\partial E^{(\mathrm{PT})}}{\partial n}  \tag{34}\\
& =\pi C(h)^{2} B_{2}(h) . \tag{35}
\end{align*}
$$

(In these and the following equations $\psi$ stands for the logarithmic derivative of the gamma function.) We point out the first appearance of a logarithmic term, namely in $\Delta E_{2}^{(r)}$. The structure of $\Delta E_{2}^{(i)}$, however, is not yet typical. The generic form is reached at the level of the third exponentially small subseries, in which both the formally real and imaginary parts are the cube of the exponentially small prefactor $C(h)$ times a sum of products of power series and logarithmic terms:

$$
\begin{align*}
& \Delta E_{3}^{(r)}= \frac{1}{8 \pi^{2}} \frac{\partial}{\partial n}\left(f_{n}^{3} \frac{\partial E^{(\mathrm{PT})}}{\partial n}\right)  \tag{36}\\
&=-\pi C(h)^{3}\left\{3\left[\ln \left(\frac{h}{32}\right)+\psi(n+1)\right] B_{3}(h)-\frac{\partial B_{3}(h)}{\partial n}\right\}  \tag{37}\\
& \begin{aligned}
\Delta E_{3}^{(i)}= & \frac{1}{48 \pi^{3}} \frac{\partial^{2}}{\partial n^{2}}\left(f_{n}^{3} \frac{\partial E^{(\mathrm{PT})}}{\partial n}\right)-\frac{1}{6 \pi} f_{n}^{3} \frac{\partial E^{(\mathrm{PT})}}{\partial n} \\
= & C(h)^{3}\left\{\left[\frac{3}{2}\left(\ln \left(\frac{h}{32}\right)+\psi(n+1)\right)^{2}-\frac{1}{2} \psi^{\prime}(n+1)-\frac{4 \pi}{3}\right] B_{3}(h)\right. \\
& \left.-\frac{1}{2}\left[\ln \left(\frac{h}{32}\right)+2 \psi(n+1)\right] \frac{\partial B_{3}(h)}{\partial n}+\frac{1}{6} \frac{\partial^{2} B_{3}(h)}{\partial n^{2}}\right\} .
\end{aligned} \tag{38}
\end{align*}
$$

This procedure can be applied without any difficulty to calculate explicitly higher exponentially small corrections. In fact, the solution for $\Delta v_{k}$ in equation (22) is a sum of homogeneous terms of degree $k$ in $f_{n}$ and its derivatives up to order $f_{n}^{(k-1)}$. Since the logarithmic terms come from these derivatives, the expression for $\Delta E_{k}$ will have $\ln h$ up to the power $k-1$. The global structure inferred for equation (27) is therefore the same as the multi-instanton expansion conjectured by Zinn-Justin [18-20] for real potentials with degenerate symmetric minima, except that in the Zinn-Justin case both the perturbative and one-instanton contributions are needed to determine the complete multi-instanton expansion. Analytically, in the Zinn-Justin expansion the power series have to be summed first for complex values of the coupling
constant and continued back to the real axis, where the imaginary contributions from the Borel sums and logarithms must cancel (these cancellations between the Borel sums of consecutive contributions are equivalent to dispersion relations, as put forward in essence by Damburg and Propin [21]).

The form of the exponentially small factor $C(h)$ in equation (29) has been derived by several authors: for example, Schmid [22] used what can be described as a 'first-order' version of our matching method, but apparently did not realize the role of the RSPT series and did not reach higher-order results; in a series of papers, Jafarizadeh et al [23-25] have discussed the derivation of the same expression by instanton methods combined with the heat kernel method; the highest result thus far seems to be by Kleinert and Mustapic [26], who using the JWKB method and a current-density formula were able to derive the expression for $C(h)$ and the first eight terms of the series for $B_{1}(h)$ in our equation (29), but to our knowledge there was not yet a systematic algorithm to calculate all the exponentially small subseries $\Delta E_{k}$.

## 4. Asymptotic behaviour of the coefficients and Borel-Padé summations

Our next goal is to study the asymptotic behaviour of the coefficients of the power series $B_{p}(h)$ (and their derivatives) which appear in the exponentially small subseries, and to implement a numerical Borel-Padé summation algorithm for the compound asymptotic expansion (27). Substituting equation (29) into the dispersion relation in $h$

$$
\begin{equation*}
E_{n}^{(2 k)}=\frac{4^{k}}{2 \pi \mathrm{i}} \int_{0}^{\infty} \Delta E_{1} h^{-k-1} \mathrm{~d} h \tag{40}
\end{equation*}
$$

yields the large-order asymptotic behaviour of the RSPT coefficients

$$
\begin{equation*}
E_{n}^{(2 k)} \sim E_{n}^{[2 k]} \equiv-\frac{60^{n}}{\pi^{3 / 2} n!}\left(\frac{15}{2}\right)^{k+\frac{1}{2}} \Gamma\left(n+\frac{1}{2}+k\right) \quad(k \rightarrow \infty) \tag{41}
\end{equation*}
$$

where we have marked with square parentheses in the superindex the functional form of the asymptotic behaviour. It follows immediately that

$$
\begin{equation*}
\frac{\partial E_{n}^{(2 k)}}{\partial n} \sim E_{n}^{[2 k]}\left[\psi\left(n+\frac{1}{2}+k\right)+\ln 60-\psi(n+1)\right] \quad(k \rightarrow \infty) \tag{42}
\end{equation*}
$$

and since $\psi(k)=\Gamma^{\prime}(k) / \Gamma(k) \sim \ln k$ as $k \rightarrow \infty$, the coefficients of the derivative grow only slightly faster than the RSPT coefficients. Furthermore, the lowest-order term of the series in the exponential of equation (31) is not a constant but proportional to $h$, and the series itself has factorially growing coefficients, from which it follows that the $b_{n, p}^{(2 k)}$ also grow only slightly faster than the RSPT coefficients:

$$
\begin{equation*}
b_{n, p}^{(2 k)} \sim(p+1) E_{n}^{[2 k]}\left[\psi\left(n+\frac{1}{2}+k\right)+\ln 60-\psi(n+1)\right] \quad(k \rightarrow \infty) . \tag{43}
\end{equation*}
$$

Considering the gamma functions in the asymptotic behaviours (41)-(43), we have implemented the Borel-Padé summations of the power series for the $n$th eigenvalue of the cubic anharmonic oscillator as

$$
\begin{equation*}
b(h) \approx \int_{0}^{\infty} \mathrm{e}^{-t} t^{n-1 / 2} P^{[p, q]}(h t) \mathrm{d} t \tag{44}
\end{equation*}
$$

where $P^{[p, q]}(t)$ is the [ $\left.p, q\right]$-Padé approximant for

$$
\begin{equation*}
\hat{b}(t)=\sum_{k=0}^{p+q} \frac{b_{k} t^{k}}{\Gamma\left(n+\frac{1}{2}+k\right)} . \tag{45}
\end{equation*}
$$

Furthermore, to avoid problems with the numerical integration we expand the Padé approximant as a polynomial plus partial fractions, i.e. assuming that all the poles are simple

$$
\begin{equation*}
P^{[p, q]}(t)=\sum_{k=0}^{p-q} p_{k} t^{k}+\frac{R(t)}{S(t)}=\sum_{k=0}^{p-q} p_{k} t^{k}+\sum_{k=1}^{q} \frac{R\left(t_{k}\right)}{S^{\prime}\left(t_{k}\right)\left(t-t_{k}\right)} \tag{46}
\end{equation*}
$$

and the integration in equation (44) can be carried out in terms of complete and incomplete gamma functions evaluated at the $q$ poles $t_{k}$ of $P^{[p, q]}(t)$ :

$$
\begin{align*}
& b(h) \approx \sum_{k=0}^{p-q} p_{k} h^{k} \Gamma\left(n+\frac{1}{2}+k\right) \\
&+\frac{\Gamma\left(n+\frac{1}{2}\right)}{h} \sum_{k=1}^{q} \frac{R\left(t_{k}\right)}{S^{\prime}\left(t_{k}\right)} \mathrm{e}^{-t_{k} / h}\left(-\frac{t_{k}}{h}\right)^{n-1 / 2} \Gamma\left(-n+\frac{1}{2},-\frac{t_{k}}{h}\right) . \tag{47}
\end{align*}
$$

We present typical samples of our numerical calculations in tables 2 and 3. The results in table 2 correspond to the $n=0$ state as the coupling constant $g$ traces an arc of fixed radius $|g|=\frac{1}{10}$ and decreasing argument from $\arg g=\frac{\pi}{2}$ to $\arg g=-\frac{\pi}{8}$. We have used a $[14,14]$ Padé approximant, which for $\arg g=\frac{\pi}{2}$ (the centre of the summability sector of the RSPT series) gives an error in the last digit shown. The exact energy reported in the last column has been calculated by the complex dilation method [14] and is correct to all the digits shown.

As we have already discussed, for $0<\arg g<\frac{\pi}{2}$ the Borel-Padé sum of the pure RSPT series reproduces the exact eigenvalue although, since we keep fixed the Pade approximant and hence the number of terms of the RSPT series being summed, the accuracy decreases as $\arg g$ approaches the Stokes line in the real axis.

For $\arg g<0$ the Borel-Padé sum of the formally real RSPT power series is just the complex conjugate of the sum for $(-\arg g)>0$, and the Borel-Padé sums of the exponentially small subseries fully account for the difference in the eigenvalue. Again, since we have kept fixed the number of terms being summed, the accuracy increases as arg $g$ moves away from the Stokes line.

In these numerical results there are two sources of truncation error: truncation in the Borel summation of each series (through the heuristic analytic continuation furnished by the Padé approximants), and truncation (to third exponentially small order) of the full asymptotic expansion (27). The effect of these truncations is illustrated in table 3, which shows the results of a similar calculation with $|g|=\frac{1}{8}$. Accuracy is more rapidly lost as arg $g$ approaches the Stokes line from $\arg g>0$, and is not regained at the same rate as in table 2 when $\arg g$ moves away towards $-\frac{\pi}{8}$.

We would finally like to stress that these results are presented as numerical evidence for the Borel summability of the asymptotic expansion (27), since in this problem the Borel-Pade summation is not a practical alternative to the much more efficient numerical methods for the determination of complex eigenvalues, especially to the complex dilation method [14].

## 5. Summary

There has been much work on the asymptotic solution of the Schrödinger equation with a polynomial potential and the associated Stokes phenomenon. General results for the Stokes constants can be found in [27], and more specific expressions for special cases of the polynomial in [28] and [29]. In particular, the cubic anharmonic oscillator is trivially equivalent to case (iv) in [29], where convergent series expansions for the corresponding Stokes constants can be
found. These series, however, converge very slowly when the transition points are not close together (see p 2712) and are not suitable for solving the eigenvalue problem.

In a recent paper [16] we have shown how to solve this problem for anharmonic oscillators by direct matching of Borel-summable asymptotic expansions obtained from suitable comparison equations. This matching shows that the positive real axis is a Stokes line of the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator (1), where the expansion changes discontinuously from the Borel summable RSPT power series to a more complicated expansion.

In the present paper we have given an explicit method to calculate to any desired order this new asymptotic expansion, which consists of the RSPT power series plus an infinite sequence of exponentially smaller subseries, where the $k$ th subseries is the $k$ th power of a common exponentially small prefactor times a sum of products of power series and logarithmic terms (the same structure as the multi-instanton expansion conjectured by Zinn-Justin for real potentials with degenerate symmetric minima). We have also implemented a numerical BorelPadé summation algorithm for the power series which appear in this expansion, and checked

Table 2. Borel-Padé sums of the asymptotic expansions for the $n=0$ state of the cubic anharmonic oscillator as the coupling constant $g$ traces an arc of fixed radius $|g|=\frac{1}{10}$ and decreasing argument that starts at $\arg g=\frac{\pi}{2}$, crosses the Stokes line at $\arg g=0$, and goes down to $\arg g=-\frac{\pi}{8}$ where the first Bender-Wu branch point is met.

| $\arg g$ | Series | $[14,14]$ Borel-Padé sum | $E$ (exact) |
| :--- | :--- | :--- | :--- |
| $\frac{\pi}{2}$ | RSPT | 0.51253812 | 0.51253815 |
| $\frac{\pi}{6}$ | RSPT | $0.49417531-0.01306321 \mathrm{i}$ | $0.49417533-0.01306320 \mathrm{i}$ |
| $\frac{\pi}{8}$ | RSPT | $0.49060486-0.01135175 \mathrm{i}$ | $0.49060488-0.01135176 \mathrm{i}$ |
| $\frac{\pi}{12}$ | RSPT | $0.48746636-0.00853035 \mathrm{i}$ | $0.48746590-0.00853031 \mathrm{i}$ |
| $\frac{\pi}{24}$ | RSPT | $0.48519435-0.00465255 \mathrm{i}$ | $0.48519743-0.00464999 \mathrm{i}$ |
| $\frac{\pi}{100}$ | RSPT | $0.48437436-0.00115577 \mathrm{i}$ | $0.48437442-0.00116138 \mathrm{i}$ |
| 0 |  |  | $0.48431600-0.00000806 \mathrm{i}$ |
| $-\frac{\pi}{100}$ | RSPT | $0.48437436+0.00115577 \mathrm{i}$ |  |
|  | $+\Delta E_{1}$ | $0.48436252+0.00114419 \mathrm{i}$ |  |
|  | $+\Delta E_{2}$ | $0.48436252+0.00114419 \mathrm{i}$ |  |
| $+\frac{\pi}{24}$ | RSPT | $0.48519435+0.00465255 \mathrm{i}$ |  |
|  | $+\Delta E_{1}$ | $0.48519792+0.00467790 \mathrm{i}$ |  |
|  | $+\Delta E_{2}$ | $0.48519791+0.00467790 \mathrm{i}$ |  |
| $+\Delta E_{3}$ | $0.48519791+0.00467790 \mathrm{i}$ | $0.48520100+0.00467534 \mathrm{i}$ |  |
| $-\frac{\pi}{12}$ | RSPT | $0.48746636+0.00853035 \mathrm{i}$ |  |
|  | $+\Delta E_{1}$ | $0.48746121+0.00843154 \mathrm{i}$ |  |
| $+\Delta E_{2}$ | $0.48746114+0.00843158 \mathrm{i}$ |  |  |
| $+\Delta E_{3}$ | $0.48746114+0.00843158 \mathrm{i}$ | $0.48746068+0.00843154 \mathrm{i}$ |  |
| $-\frac{\pi}{8}$ | RSPT | $0.49060486+0.01135175 \mathrm{i}$ |  |
| $+\Delta E_{1}$ | $0.49021432+0.01210152 \mathrm{i}$ |  |  |
| $+\Delta E_{2}$ | $0.49020993+0.01209829 \mathrm{i}$ | 0.0 .00114979 i |  |
| $+\Delta E_{3}$ | $0.49020997+0.01209825 \mathrm{i}$ | $0.49020998+0.01209827 \mathrm{i}$ |  |

Table 3. Borel-Padé sums of the asymptotic expansions for the $n=0$ state of the cubic anharmonic oscillator as the coupling constant $g$ traces an arc of fixed radius $|g|=\frac{1}{8}$ and decreasing argument that starts at $\arg g=\frac{\pi}{2}$, crosses the Stokes line at $\arg g=0$, and goes down to $\arg g=-\frac{\pi}{8}$ where the first Bender-Wu branch point is met.

| $\arg g$ | Series | $[14,14]$ Borel-Padé sum | $E$ (exact) |
| :--- | :--- | :--- | :--- |
| $\frac{\pi}{2}$ | RSPT | 0.51876032 | 0.51876034 |
| $\frac{\pi}{6}$ | RSPT | $0.49216345-0.02108187 \mathrm{i}$ | $0.49216303-0.02108121 \mathrm{i}$ |
| $\frac{\pi}{8}$ | RSPT | $0.48620934-0.01915444 \mathrm{i}$ | $0.48621047-0.01915490 \mathrm{i}$ |
| $\frac{\pi}{12}$ | RSPT | $0.48045182-0.01531487 \mathrm{i}$ | $0.48041187-0.01533872 \mathrm{i}$ |
| $\frac{\pi}{24}$ | RSPT | $0.47528184-0.00959261 \mathrm{i}$ | $0.47541703-0.00927923 \mathrm{i}$ |
| $\frac{\pi}{100}$ | RSPT | $0.47245366-0.00275111 \mathrm{i}$ | $0.47284757-0.00299341 \mathrm{i}$ |
| 0 |  |  | $0.47239873-0.00070262 \mathrm{i}$ |
| $-\frac{\pi}{100}$ | RSPT | $0.47245366+0.00275111 \mathrm{i}$ |  |
|  | $+\Delta E_{1}$ | $0.47179419+0.00147627 \mathrm{i}$ |  |
|  | $+\Delta E_{2}$ | $0.47179170+0.00149173 \mathrm{i}$ |  |
| $+\Delta E_{3}$ | $0.47179193+0.00149155 \mathrm{i}$ | $0.47218537+0.00172447 \mathrm{i}$ |  |
| $-\frac{\pi}{24}$ | RSPT | $0.47528184+0.00959261 \mathrm{i}$ |  |
|  | $+\Delta E_{1}$ | $0.47350286+0.01038644 \mathrm{i}$ |  |
|  | $+\Delta E_{2}$ | $0.47351126+0.01035947 \mathrm{i}$ |  |
| $+\Delta E_{3}$ | $0.47351157+0.01036010 \mathrm{i}$ | $0.47364771+0.01005546 \mathrm{i}$ |  |
| $-\frac{\pi}{12}$ | RSPT | $0.48045182+0.01531487 \mathrm{i}$ |  |
|  | $+\Delta E_{1}$ | $0.48366496+0.01887465 \mathrm{i}$ |  |
| $+\Delta E_{2}$ | $0.48371271+0.01903548 \mathrm{i}$ |  |  |
| $+\frac{\pi}{8}$ | RSPT | $0.48620934+0.01915444 \mathrm{i}$ |  |
|  | $+\Delta E_{1}$ | $0.50019168+0.00550284 \mathrm{i}$ |  |
| $+\Delta E_{2}$ | $0.49930531+0.00290958 \mathrm{i}$ |  |  |
| $+\Delta E_{3}$ | $0.49865325+0.00279566 \mathrm{i}$ | $0.49869010+0.00298732 \mathrm{i}$ |  |

numerically up to third exponentially small order the very likely conjecture that the expansion is Borel summable to the eigenvalues. It might be possible to prove rigorously this summability, at least for small values of $|g|$, from the general results of [10] but, to our knowledge, a complete and mathematically rigorous proof of the required resurgence properties of suitably normalized WKB wavefunctions is still not available. We would finally like to mention as another open problem the proof of the relation between the the perturbation series and the matching function given by equation (19) and the analogous equation valid for quartic oscillators.

## Acknowledgments

The financial support of the Universidad Complutense under project PR156/97-7100 and the Comisión Interministerial de Ciencia y Tecnología under project PB98-0821 are gratefully acknowledged.

## References

[1] Yang C N and Lee T D 1952 Phys. Rev. 87404
[2] Lee T D and Yang C N 1952 Phys. Rev. 87410
[3] Fisher M E 1978 Phys. Rev. Lett. 401610
[4] Yaris R, Bendler J, Lovett R A, Bender C M and Fedders P A 1978 Phys. Rev. A 181816
[5] Balslev E and Combes J C 1971 Commun. Math. Phys. 22280
[6] Naimark M A 1964 Linear Differential Operators Part II (London: Harrap)
[7] Caliceti E, Graffi S and Maioli M 1980 Commun. Math. Phys. 7551
[8] Siegert A J F 1939 Phys. Rev. 56750
[9] Delabaere E and Pham F 1998 Phys. Lett. A 25025
[10] Delabaere E, Dillinger H and Pham F 1997 J. Math. Phys. 386126
[11] Delabaere E and Pham F 1999 Ann. Inst. Henri Poincaré A 711
[12] Bender C M and Dunne G V 1999 J. Math. Phys. 404616
[13] Bender C M and Wu T T 1969 Phys. Rev. 1841231
[14] Alvarez G 1995 J. Phys. A: Math. Gen. 274589
[15] Simon B 1970 Ann. Phys., NY 5876
[16] Alvarez G and Casares C 2000 J. Phys. A: Math. Gen. 332499
[17] Hoe N, D'Etat B, Grumberg J, Caby M, Leboucher E and Couland G 1982 Phys. Rev. A 25891
[18] Zinn-Justin J 1981 Nucl. Phys. B 192125
[19] Zinn-Justin J 1983 Nucl. Phys. B 218333
[20] Zinn-Justin J 1984 J. Math. Phys. 25549
[21] Damburg R J and Propin R Kh 1983 J. Phys. B: At. Mol. Phys. 163741
[22] Schmid A 1986 Ann. Phys., NY 170333
[23] Jafarizadeh M A and Fakhri H 1997 Phys. Lett. A 230157
[24] Jafarizadeh M A, Darabi F and Rastegar A 1998 Phys. Lett. A 24819
[25] Jafarizadeh M A and Jalalzadeh S 2000 J. Math. Phys. 41701
[26] Kleinert H and Mustapic I 1996 Int. J. Mod. Phys. A 244383
[27] Sibuya Y 1975 Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient (Amsterdam: North-Holland)
[28] Dzieciol A 1992 J. Math. Phys. 33840
[29] Zhu C and Nakamura H 1992 J. Math. Phys. 332697

