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the eigenvalues of the cubic anharmonic oscillator

Gabriel Álvarez and Carmen Casares
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Abstract. The asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator is
studied in a region of the coupling constant plane in which there is a sequence of exponentially
small subseries beyond the standard Rayleigh–Schrödinger perturbation theory (RSPT) power
series. We give a simple algorithm for the calculation of these subseries (to any desired order) in
terms of the RSPT coefficients expressed as polynomials in the quantum number, and illustrate our
results with numerical Borel–Padé summations of the expansion up to third exponentially small
order.

1. Introduction

It seems that the initial interest in the eigenvalues of the cubic anharmonic oscillator

H = 1
2 p2 + 1

2 x2 + gx3 (1)

came from the study of the Yang–Lee singularities of the Ising model [1–3] by renormalization
group methods, which led Bessis and Zinn-Justin to conjecture that, for purely imaginary
values of the coupling constant g, the spectrum of the operator (1) is real. Physical intuition
also suggests that for nonzero real values of g the bound states of the harmonic oscillator
become resonances, and Yaris et al [4] used the cubic anharmonic oscillator as a model to
argue heuristically that the complex-dilation method [5] is applicable to potentials that do not
vanish at infinity, and yields correctly both the real and the imaginary parts of the complex
eigenvalues. Yet a mathematically rigorous discussion of the problem from the functional-
analytic point of view is not straightforward because the action of the operator (1) on the space
of infinitely differentiable functions of compact support admits infinitely many self-adjoint
extensions [6]. This is the quantum analogue of the fact that a classical particle not confined
to the potential well reaches minus infinity in a finite amount of time, and requires ‘further
instructions’ to proceed. The essential result was given by Caliceti et al [7]: for Im g > 0 the
spectrum of the operator (1) consists of isolated eigenvalues of finite multiplicity that can be
continued analytically to Im g = 0, where they correspond to the solutions of the differential
equation

− 1
2 ψ ′′(x) + ( 1

2 x2 + gx3 − E)ψ(x) = 0 (2)

that are exponentially decreasing at plus infinity and satisfy a Gamow–Siegert [8] purely
outgoing wave boundary condition at minus infinity. Furthermore, for sufficiently small values
of |g| and 0 < arg g < π , the Rayleigh–Schrödinger perturbation theory (RSPT) power series
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Figure 1. Schematic representation of the Riemann surface of the eigenvalues of the cubic
anharmonic oscillator. The origin is a global g2/5 singularity, and the arguments have to be
understood modulo 5π . The dots mark the lowest Bender–Wu branch points; in the first of the
four families they are labelled by the unperturbed quantum numbers of the levels that cross. The
shaded areas represent the higher branch points, which cluster at the origin. The R and iR labels
mark the values of arg g for which the eigenvalues are real and purely imaginary, respectively.

is asymptotic and Borel summable to these resonances. Note that, for purely imaginary values
of the coupling constant (i.e. arg g = π

2 ), we have the typical alternating sign pattern of the
Borel summable series with real Borel sum, while for real values of g the coefficients of the
RSPT series have the same sign and the Borel transform develops a singularity on the positive
real axis that prevents summability.

The conjecture of Bessis and Zinn-Justin has been reconsidered recently in the more
general setting of PT-symmetric Hamiltonians by Delabaere and Pham [9], who rederived the
small |g| version of the result using the ‘exact WKB method’ [10, 11], and by Bender and
Dunne [12], who also gave numerical evidence of the Padé summability of the RSPT series
for purely imaginary values of the coupling constant.

Summing up, there are analytic proofs and numerical algorithms for the Borel summability
of the RSPT series in the coupling constant region 0 < arg g < π . These results, however,
dealt only with the behaviour of the eigenvalues in limited regions of the coupling constant, and
a global description (analogous to the work of Bender and Wu on the quartic oscillator [13])
was still lacking. The main idea is that the different eigenvalues are the values that a
single analytic function takes on different sheets of a Riemann surface characterized by the
position of its singularities (the Bender–Wu branch points), at which level crossing occurs.
In 1995 Alvarez [14] applied numerical and semiclassical methods to study the full analytic
configuration of the eigenvalues of the cubic anharmonic oscillator, which is illustrated in
figure 1. There are four families of square root branch points, each of which can be labelled by
the quantum numbers of the two unperturbed levels that cross. The origin, which behaves as a
g2/5 global singularity in the sense defined by Simon [15], is a limit point of the four families
of branch points. Therefore the Riemann surface consists of an infinite number of ‘two and a
half’ Riemann sheets joined to each other at exactly four square root branch points. Numerical
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calculations for arbitrary values of |g| and analytic arguments for sufficiently small values of
|g| confirmed that the eigenvalues are real for arg g = π

2 and 3π (and purely imaginary for
arg g = 7π

4 and 17π
4 ).

Our main goal in this paper is to study the structure and summability of the asymptotic
expansion for the eigenvalues beyond the real axis. For concreteness, consider the analytic
continuation of the unperturbed n = 0 eigenvalue across arg g = 0. The first singularity met is
the (0, 1)-type Bender–Wu branch point located at |g| ≈ 0.138 096, arg g = −π

8 (see figure 1
and [14]). That is to say, there is a sector of opening larger than π in which the n = 0 eigenvalue
is analytic. In a recent paper [16] we showed that the positive real axis, arg g = 0, is a Stokes
line of the asymptotic expansion for the eigenvalues, i.e. the asymptotic expansion changes
discontinuously from the Borel summable RSPT power series valid in 0 < arg g < π to a
more complicated expansion valid (for our n = 0 example) in −π

8 < arg g < 0, and reduced
the problem of finding the new expansion to the solution of an ‘exact matching condition’.
In this paper we show that the new asymptotic expansion consists of the RSPT power series
plus an infinite sequence of exponentially smaller subseries, where the kth subseries is the kth
power of a common exponentially small prefactor times a sum of products of power series and
logarithmic terms. Thanks to an observation of Hoe et al [17] we are able to give a simple
algorithm for the calculation of these subseries (to any desired order) in terms of the elementary
calculation of the RSPT coefficients as polynomials in the quantum number n. We find that
all the power series coefficients grow only slightly faster than the RSPT coefficients, and our
conjecture is that these power series are Borel summable, a conjecture supported by numerical
Borel–Padé summations in the sector −π

8 < arg g < 0 up to third exponentially small order.
The layout of the paper is as follows: in the next section we summarize the main ideas of

the matching procedure of [16] with just enough detail to explain the origin of the matching
condition and the analytic reason for the discontinuous change of the asymptotic expansion
across the real axis; section 3 is devoted to the iterative solution of the matching condition
beyond the real axis, and to the analysis of the structure of the successively exponentially
smaller contributions; section 4 deals with the asymptotic behaviour of the power series
coefficients and the numerical Borel–Padé summation; the paper ends with a summary.

2. Matching condition

Although we refer to [16] for a detailed account, in this section we outline the main ideas of the
matching procedure used to obtain the asymptotic expansion that includes exponentially small
subseries beyond the standard RSPT power series. The solution of the eigenvalue problem
posed in the introduction consists of three steps: (i) scale the independent variable in the
Schrödinger equation to obtain an equation with an unperturbed double turning point fixed
at the origin and an unperturbed simple turning point fixed at (say) one; (ii) build uniform,
Borel summable asymptotic expansions of the wavefunction around these turning points; and
(iii) match these expansions in the ‘under the barrier’ region.

The unperturbed turning points are fixed by the new independent variable

z = −h1/2x (3)

where

h = (2g)2 (4)

and the resulting Schrödinger equation is

−h2ψ ′′(z) + (z2 − z3 − 2hE)ψ(z) = 0. (5)
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Table 1. Lowest E(2k)(ν) and f (2k)(ν) coefficients as polynomials in ν. The RSPT coefficient of
g2k for the nth eigenvalue is E(2k)(n + 1

2 ).

k −E(2k)(ν) f (2k)(ν)

0 −ν

1 7
16 + 15

4 ν2 77
128 + 141

32 ν2

2 1155
64 ν + 705

16 ν3 13 937
2048 ν + 7717

512 ν3

3 101 479
2048 + 209 055

256 ν2 + 115 755
128 ν4 43 147 783

7864 320 + 5153 379
65 536 ν2 + 2663 129

32 768 ν4

4 129 443 349
16 384 ν + 77 300 685

2048 ν3 + 23 968 161
1024 ν5 1769 452 671

8388 608 ν + 240 109 947
262 144 ν3 + 282 482 109

524 288 ν5

(The role of the minus sign in equation (3) is to make the convention of this paper, standard when
dealing with the cubic oscillator, conform to the convention of [16] which deals simultaneously
with even and odd oscillators.)

The origin-anchored solution which is exponentially decreasing at minus infinity can be
written in terms of the parabolic cylinder function Dν−1/2(z),

ψ(z) = [u′(z)]−1/2Dν−1/2

[
−

(
2

h

)1/2

u(z)

]
(6)

which, put into equation (5), gives the following equation for u(z):

u(z)2u′(z)2 = z2 − z3 − 2h[E − νu′(z)2] +
h2

2

[
u′′′(z)
u′(z)

− 3

2

(
u′′(z)
u′(z)

)2
]

. (7)

Substituting the asymptotic expansions

u(z) =
∞∑

k=0

uk(z)h
k (8)

E =
∞∑

k=0

E(2k)(ν)
hk

4k
(9)

into equation (7) and equating powers of h, we obtain a system of differential equations that
can be integrated recursively for the uk(z) in terms of elementary functions. The E(2k)(ν),
which are fixed by the requirement that uk(z) be regular at the origin, turn out to be precisely
the RSPT coefficients expanded as polynomials in n + 1

2 , except that they are now functions
of the as yet unspecified parameter ν. For later reference, the first five E(2k)(ν) are listed in
table 1.

The uniform expansion anchored at the unperturbed simple turning point z = 1 is built
following the same steps, except that the solution with outgoing wave behaviour at infinity is
written in terms of the Airy function Ai(+)(z) = Bi(z) + iAi(z). Therefore we set

ψ(z) = [v′(z)]−1/2Ai(+)[h−2/3v(z)] (10)

into equation (5) and obtain the corresponding equation for v(z):

v(z)v′(z)2 = z2 − z3 − h2E +
h2

2

[
v′′′(z)
v′(z)

− 3

2

(
v′′(z)
v′(z)

)2
]

. (11)

Again, substituting the asymptotic expansion for v(z)

v(z) =
∞∑

k=0

vk(z)h
k (12)
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and the asymptotic expansion for the energy (9) into equation (11) we obtain a system of
equations for the vk(z) which can be integrated recursively in terms of elementary functions.

The final step is to match the Borel summable asymptotic expansions for the wavefunctions
that result from the composition of (6) and (8) (around the origin), and of (10) and (12) (around
the outer turning point) in their common region of validity—the ‘under the barrier’ region.

Comparing the Borel summable asymptotic expansions for the Airy and parabolic cylinder
functions [16] in the region 0 < arg g < π , it turns out that the exponentially increasing term
in the asymptotic expansion of (6) must vanish, which leads to the exact matching condition

ν = n + 1
2 (n = 0, 1, 2, . . .) (13)

and to the ensuing expansion for the energy

E ∼ E(PT) ≡
∞∑

k=0

E(2k)
n

hk

4k
(14)

where we have denoted

E(2k)
n ≡ E(2k)(n + 1

2 ). (15)

This is, of course, the region of Borel summability of the RSPT series mentioned above.
For sufficiently small arg g < 0, however, both the asymptotic expansions of the Airy

and parabolic cylinder functions are the sum of a dominant and a subdominant series uniquely
defined by Borel summability, and we implement the matching by equating the ratios of the
dominant to the subdominant terms in the asymptotic expansions of equations (6) and (10).
This matching condition, which is an equation for ν, can be written as

f (ν) = eiπ (ei2πν + 1) (16)

where

f (ν) = (2π)1/2

�(ν + 1
2 )

(
32

h

)ν

exp

[
− 8

15h
−

∞∑
k=1

f (2k)(ν)hk

]
(17)

and the f (2k)(ν) are polynomials in ν which can be calculated explicitly in principle to any
desired order. We list the first four f (2k)(ν) in the last column of table 1.

As we mentioned in the introduction, the calculation of the polynomials E(2k)(ν) is trivial
and can be carried out to high order with just a few lines of code. Although equally algorithmic,
a direct calculation of the f (2k)(ν) from the matching algorithm is much more time- and
memory-consuming, essentially because it involves the composition and expansion of series
with a rapidly increasing number of terms. The calculation of the f (2k)(ν) to high order can be
carried out, however, without any difficulty thanks to an observation made by Hoe et al [17] in
the context of the Stark effect in hydrogenic ions. In fact, the Stark effect Hamiltonian, after
separation into parabolic coordinates, is equivalent to a two-dimensional isotropic quartic
oscillator, and Hoe et al noticed that the ionization rates could be expressed in terms of the
energies. A similar relation seems to be true for the cubic anharmonic oscillator: the data in
table 1 illustrate that

f (2k)(ν) = − 2

15

1

k4k

∂E(2k+2)(ν)

∂ν
(18)

or in a more condensed form

f (ν) = (2π)1/225ν

�(ν + 1
2 )

exp

[
8

15

∫
∂E

∂ν

dh

h2

]
. (19)

We do not have a proof of these equations (probably related to the elliptic character of cubic
and quartic polynomials), but we have checked their validity by direct calculation with the
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matching algorithm up to k = 10. Then we used a standard RSPT algorithm to calculate the
E(2k)(ν), and from these and equation (18) the f (2k)(ν) to a sufficiently high order to perform
the numerical Borel–Padé summations of section 4 and check our large-k asymptotic estimates.

3. Iterative solution of the matching condition beyond the real axis

First note that, if the matching functions f (ν) were identically zero, then the solutions of
equation (16) would be precisely those given by equation (13). Since f (ν) is exponentially
small, we put

ν = n + 1
2 + �ν (n = 0, 1, 2, . . .) (20)

and rewrite the matching condition in a form suitable for iterative solution. We keep track
of the exponentially small order by introducing a parameter λ (that ultimately will be set to
one) which appears in two places: multiplying the matching function f (ν) and as the ordering
parameter in the series for �ν. That is to say, we write

�ν = 1

2π i
ln

[
1 + λf

(
n +

1

2
+ �ν

)]
(21)

where

�ν = λ�ν1 + λ2�ν2 + λ3�ν3 + · · · . (22)

Expanding the right-hand side of equation (21) as a Taylor series in λ, we can find immediately
the first three terms (which will be enough to infer the general pattern) of the solution for �ν:

�ν1 = − i

2π
fn (23)

�ν2 = − 1

4π2
fnf

′
n +

i

4π
f 2

n (24)

�ν3 = − i

6π
f 3

n +
3

8π2
f 2

n f ′
n +

i

8π3
fn(f

′
n)

2 +
i

16π3
f 2

n f ′′
n (25)

where again we have denoted by a subindex n the value of the matching function f (ν) and its
derivatives at ν = n + 1

2 .
The corresponding expansion for the eigenvalues up to third exponentially small order is

easily obtained by first putting equation (20) into (9) and expanding to third order in �ν

E ∼ E(PT) +
�ν

1!

∂E(PT)

∂n
+

�ν2

2!

∂2E(PT)

∂n2
+

�ν3

3!

∂3E(PT)

∂n3
+ O(�ν4) (26)

and subsequently substituting equations (22)–(25) into (26) and collecting powers of λ. We
will write the final asymptotic expansion as

E ∼ E(PT) + �E1 + �E2 + �E3 + · · · (27)

where we have already set λ = 1 and the subindex labels the exponentially small order.
The first exponentially small subseries is formally purely imaginary

�E1 = − i

2π
fn

∂E(PT)

∂n
(28)

= −iC(h)B1(h) (29)

where we have defined the exponentially small prefactor

C(h) ≡ 25n+2

π1/2n!
e−8/(15h)h−(n+1/2) (30)
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and B1(h) is the p = 1 instance of

Bp(h) =
∞∑

k=0

b(2k)
n,p hk ≡ exp

[
− p

∞∑
k=1

f (2k)
n hk

]( ∞∑
k=0

∂E(2k)
n

∂n

hk

4k

)
. (31)

The last two factors in equation (28) are readily interpreted in the context of the elementary
semiclassical derivations of the imaginary part of the resonances: ∂E(PT)

∂n
corresponds to the

‘frequency of collisions with the barrier’, while fn represents the ‘tunnelling probability’.
Although this seems to be the natural factorization from the physical point of view, for our
purposes the factorization of equation (29) is more convenient, in which we separate the
exponentially small prefactor from the Borel summable power series.

The second exponentially small correction to the eigenvalue (i.e. proportional to the
square of C(h)) has both formally real and formally imaginary parts, which we denote with
superindices:

�E
(r)
2 = − 1

8π2

∂

∂n

(
f 2

n

∂E(PT)

∂n

)
(32)

= C(h)2

{[
ln

(
h

32

)
+ ψ(n + 1)

]
B2(h) − 1

2

∂B2(h)

∂n

}
(33)

�E
(i)
2 = 1

4π
f 2

n

∂E(PT)

∂n
(34)

= πC(h)2B2(h). (35)

(In these and the following equations ψ stands for the logarithmic derivative of the gamma
function.) We point out the first appearance of a logarithmic term, namely in �E

(r)
2 . The

structure of �E
(i)
2 , however, is not yet typical. The generic form is reached at the level of the

third exponentially small subseries, in which both the formally real and imaginary parts are
the cube of the exponentially small prefactor C(h) times a sum of products of power series
and logarithmic terms:

�E
(r)
3 = 1

8π2

∂

∂n

(
f 3

n

∂E(PT)

∂n

)
(36)

= − πC(h)3

{
3

[
ln

(
h

32

)
+ ψ(n + 1)

]
B3(h) − ∂B3(h)

∂n

}
(37)

�E
(i)
3 = 1

48π3

∂2

∂n2

(
f 3

n

∂E(PT)

∂n

)
− 1

6π
f 3

n

∂E(PT)

∂n
(38)

= C(h)3

{[
3

2

(
ln

(
h

32

)
+ ψ(n + 1)

)2

− 1

2
ψ ′(n + 1) − 4π

3

]
B3(h)

−1

2

[
ln

(
h

32

)
+ 2ψ(n + 1)

]
∂B3(h)

∂n
+

1

6

∂2B3(h)

∂n2

}
. (39)

This procedure can be applied without any difficulty to calculate explicitly higher exponentially
small corrections. In fact, the solution for �νk in equation (22) is a sum of homogeneous terms
of degree k in fn and its derivatives up to order f (k−1)

n . Since the logarithmic terms come from
these derivatives, the expression for �Ek will have ln h up to the power k − 1. The global
structure inferred for equation (27) is therefore the same as the multi-instanton expansion
conjectured by Zinn-Justin [18–20] for real potentials with degenerate symmetric minima,
except that in the Zinn-Justin case both the perturbative and one-instanton contributions are
needed to determine the complete multi-instanton expansion. Analytically, in the Zinn-Justin
expansion the power series have to be summed first for complex values of the coupling
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constant and continued back to the real axis, where the imaginary contributions from the Borel
sums and logarithms must cancel (these cancellations between the Borel sums of consecutive
contributions are equivalent to dispersion relations, as put forward in essence by Damburg and
Propin [21]).

The form of the exponentially small factor C(h) in equation (29) has been derived by
several authors: for example, Schmid [22] used what can be described as a ‘first-order’ version
of our matching method, but apparently did not realize the role of the RSPT series and did
not reach higher-order results; in a series of papers, Jafarizadeh et al [23–25] have discussed
the derivation of the same expression by instanton methods combined with the heat kernel
method; the highest result thus far seems to be by Kleinert and Mustapic [26], who using the
JWKB method and a current–density formula were able to derive the expression for C(h) and
the first eight terms of the series for B1(h) in our equation (29), but to our knowledge there
was not yet a systematic algorithm to calculate all the exponentially small subseries �Ek .

4. Asymptotic behaviour of the coefficients and Borel–Padé summations

Our next goal is to study the asymptotic behaviour of the coefficients of the power series Bp(h)

(and their derivatives) which appear in the exponentially small subseries, and to implement
a numerical Borel–Padé summation algorithm for the compound asymptotic expansion (27).
Substituting equation (29) into the dispersion relation in h

E(2k)
n = 4k

2π i

∫ ∞

0
�E1h

−k−1 dh (40)

yields the large-order asymptotic behaviour of the RSPT coefficients

E(2k)
n ∼ E[2k]

n ≡ − 60n

π3/2 n!

(
15

2

)k+
1
2

�(n + 1
2 + k) (k → ∞) (41)

where we have marked with square parentheses in the superindex the functional form of the
asymptotic behaviour. It follows immediately that

∂E(2k)
n

∂n
∼ E[2k]

n

[
ψ

(
n +

1

2
+ k

)
+ ln 60 − ψ(n + 1)

]
(k → ∞) (42)

and since ψ(k) = �′(k)/�(k) ∼ ln k as k → ∞, the coefficients of the derivative grow only
slightly faster than the RSPT coefficients. Furthermore, the lowest-order term of the series in
the exponential of equation (31) is not a constant but proportional to h, and the series itself has
factorially growing coefficients, from which it follows that the b(2k)

n,p also grow only slightly
faster than the RSPT coefficients:

b(2k)
n,p ∼ (p + 1)E[2k]

n [ψ(n + 1
2 + k) + ln 60 − ψ(n + 1)] (k → ∞). (43)

Considering the gamma functions in the asymptotic behaviours (41)–(43), we have
implemented the Borel–Padé summations of the power series for the nth eigenvalue of the
cubic anharmonic oscillator as

b(h) ≈
∫ ∞

0
e−t tn−1/2P [p,q](ht) dt (44)

where P [p,q](t) is the [p, q]-Padé approximant for

b̂(t) =
p+q∑
k=0

bkt
k

�(n + 1
2 + k)

. (45)
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Furthermore, to avoid problems with the numerical integration we expand the Padé approximant
as a polynomial plus partial fractions, i.e. assuming that all the poles are simple

P [p,q](t) =
p−q∑
k=0

pkt
k +

R(t)

S(t)
=

p−q∑
k=0

pkt
k +

q∑
k=1

R(tk)

S ′(tk)(t − tk)
(46)

and the integration in equation (44) can be carried out in terms of complete and incomplete
gamma functions evaluated at the q poles tk of P [p,q](t):

b(h) ≈
p−q∑
k=0

pkh
k�(n + 1

2 + k)

+
�(n + 1

2 )

h

q∑
k=1

R(tk)

S ′(tk)
e−tk/h

(
− tk

h

)n−1/2

�

(
−n +

1

2
, − tk

h

)
. (47)

We present typical samples of our numerical calculations in tables 2 and 3. The results
in table 2 correspond to the n = 0 state as the coupling constant g traces an arc of fixed
radius |g| = 1

10 and decreasing argument from arg g = π
2 to arg g = −π

8 . We have used
a [14, 14] Padé approximant, which for arg g = π

2 (the centre of the summability sector of
the RSPT series) gives an error in the last digit shown. The exact energy reported in the last
column has been calculated by the complex dilation method [14] and is correct to all the digits
shown.

As we have already discussed, for 0 < arg g < π
2 the Borel–Padé sum of the pure RSPT

series reproduces the exact eigenvalue although, since we keep fixed the Padé approximant
and hence the number of terms of the RSPT series being summed, the accuracy decreases as
arg g approaches the Stokes line in the real axis.

For arg g < 0 the Borel–Padé sum of the formally real RSPT power series is just the
complex conjugate of the sum for (− arg g) > 0, and the Borel–Padé sums of the exponentially
small subseries fully account for the difference in the eigenvalue. Again, since we have kept
fixed the number of terms being summed, the accuracy increases as arg g moves away from
the Stokes line.

In these numerical results there are two sources of truncation error: truncation in the
Borel summation of each series (through the heuristic analytic continuation furnished by the
Padé approximants), and truncation (to third exponentially small order) of the full asymptotic
expansion (27). The effect of these truncations is illustrated in table 3, which shows the results
of a similar calculation with |g| = 1

8 . Accuracy is more rapidly lost as arg g approaches the
Stokes line from arg g > 0, and is not regained at the same rate as in table 2 when arg g moves
away towards −π

8 .
We would finally like to stress that these results are presented as numerical evidence for

the Borel summability of the asymptotic expansion (27), since in this problem the Borel–Padé
summation is not a practical alternative to the much more efficient numerical methods for the
determination of complex eigenvalues, especially to the complex dilation method [14].

5. Summary

There has been much work on the asymptotic solution of the Schrödinger equation with a
polynomial potential and the associated Stokes phenomenon. General results for the Stokes
constants can be found in [27], and more specific expressions for special cases of the polynomial
in [28] and [29]. In particular, the cubic anharmonic oscillator is trivially equivalent to case (iv)
in [29], where convergent series expansions for the corresponding Stokes constants can be
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found. These series, however, converge very slowly when the transition points are not close
together (see p 2712) and are not suitable for solving the eigenvalue problem.

In a recent paper [16] we have shown how to solve this problem for anharmonic
oscillators by direct matching of Borel-summable asymptotic expansions obtained from
suitable comparison equations. This matching shows that the positive real axis is a Stokes
line of the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator (1),
where the expansion changes discontinuously from the Borel summable RSPT power series
to a more complicated expansion.

In the present paper we have given an explicit method to calculate to any desired order
this new asymptotic expansion, which consists of the RSPT power series plus an infinite
sequence of exponentially smaller subseries, where the kth subseries is the kth power of a
common exponentially small prefactor times a sum of products of power series and logarithmic
terms (the same structure as the multi-instanton expansion conjectured by Zinn-Justin for real
potentials with degenerate symmetric minima). We have also implemented a numerical Borel–
Padé summation algorithm for the power series which appear in this expansion, and checked

Table 2. Borel–Padé sums of the asymptotic expansions for the n = 0 state of the cubic anharmonic
oscillator as the coupling constant g traces an arc of fixed radius |g| = 1

10 and decreasing argument
that starts at arg g = π

2 , crosses the Stokes line at arg g = 0, and goes down to arg g = − π
8 where

the first Bender–Wu branch point is met.

arg g Series [14, 14] Borel–Padé sum E (exact)

π

2
RSPT 0.512 538 12 0.512 538 15

π

6
RSPT 0.494 175 31 − 0.013 063 21i 0.494 175 33 − 0.013 063 20i

π

8
RSPT 0.490 604 86 − 0.011 351 75i 0.490 604 88 − 0.011 351 76i

π

12
RSPT 0.487 466 36 − 0.008 530 35i 0.487 465 90 − 0.008 530 31i

π

24
RSPT 0.485 194 35 − 0.004 652 55i 0.485 197 43 − 0.004 649 99i

π

100
RSPT 0.484 374 36 − 0.001 155 77i 0.484 374 42 − 0.001 161 38i

0 0.484 316 00 − 0.000 008 06i

− π

100
RSPT 0.484 374 36 + 0.001 155 77i

+�E1 0.484 362 52 + 0.001 144 19i
+�E2 0.484 362 52 + 0.001 144 19i
+�E3 0.484 362 52 + 0.001 144 19i 0.484 362 59 + 0.001 149 79i

− π

24
RSPT 0.485 194 35 + 0.004 652 55i

+�E1 0.485 197 92 + 0.004 677 90i
+�E2 0.485 197 91 + 0.004 677 90i
+�E3 0.485 197 91 + 0.004 677 90i 0.485 201 00 + 0.004 675 34i

− π

12
RSPT 0.487 466 36 + 0.008 530 35i

+�E1 0.487 461 21 + 0.008 431 54i
+�E2 0.487 461 14 + 0.008 431 58i
+�E3 0.487 461 14 + 0.008 431 58i 0.487 460 68 + 0.008 431 54i

−π

8
RSPT 0.490 604 86 + 0.011 351 75i

+�E1 0.490 214 32 + 0.012 101 52i
+�E2 0.490 209 93 + 0.012 098 29i
+�E3 0.490 209 97 + 0.012 098 25i 0.490 209 98 + 0.012 098 27i
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Table 3. Borel–Padé sums of the asymptotic expansions for the n = 0 state of the cubic anharmonic
oscillator as the coupling constant g traces an arc of fixed radius |g| = 1

8 and decreasing argument
that starts at arg g = π

2 , crosses the Stokes line at arg g = 0, and goes down to arg g = − π
8 where

the first Bender–Wu branch point is met.

arg g Series [14, 14] Borel–Padé sum E (exact)

π

2
RSPT 0.518 760 32 0.518 760 34

π

6
RSPT 0.492 163 45 − 0.021 081 87i 0.492 163 03 − 0.021 081 21i

π

8
RSPT 0.486 209 34 − 0.019 154 44i 0.486 210 47 − 0.019 154 90i

π

12
RSPT 0.480 451 82 − 0.015 314 87i 0.480 411 87 − 0.015 338 72i

π

24
RSPT 0.475 281 84 − 0.009 592 61i 0.475 417 03 − 0.009 279 23i

π

100
RSPT 0.472 453 66 − 0.002 751 11i 0.472 847 57 − 0.002 993 41i

0 0.472 398 73 − 0.000 702 62i

− π

100
RSPT 0.472 453 66 + 0.002 751 11i

+�E1 0.471 794 19 + 0.001 476 27i
+�E2 0.471 791 70 + 0.001 491 73i
+�E3 0.471 791 93 + 0.001 491 55i 0.472 185 37 + 0.001 724 47i

− π

24
RSPT 0.475 281 84 + 0.009 592 61i

+�E1 0.473 502 86 + 0.010 386 44i
+�E2 0.473 511 26 + 0.010 359 47i
+�E3 0.473 511 57 + 0.010 360 10i 0.473 647 71 + 0.010 055 46i

− π

12
RSPT 0.480 451 82 + 0.015 314 87i

+�E1 0.483 664 96 + 0.018 874 65i
+�E2 0.483 712 71 + 0.019 035 48i
+�E3 0.483 710 37 + 0.019 045 29i 0.483 667 94 + 0.019 067 94i

−π

8
RSPT 0.486 209 34 + 0.019 154 44i

+�E1 0.500 191 68 + 0.005 502 84i
+�E2 0.499 305 31 + 0.002 909 58i
+�E3 0.498 653 25 + 0.002 795 66i 0.498 690 10 + 0.002 987 32i

numerically up to third exponentially small order the very likely conjecture that the expansion is
Borel summable to the eigenvalues. It might be possible to prove rigorously this summability,
at least for small values of |g|, from the general results of [10] but, to our knowledge, a complete
and mathematically rigorous proof of the required resurgence properties of suitably normalized
WKB wavefunctions is still not available. We would finally like to mention as another open
problem the proof of the relation between the the perturbation series and the matching function
given by equation (19) and the analogous equation valid for quartic oscillators.
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